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Nonnegative Matrix Factorization

for Fluorescence Unmixing
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Abstract—Nonnegative matrix factorization (NMF) is usually
applied to multispectral �uorescence imaging for �uorescence
unmixing. Unfortunately, most NMF-based �uorescence
unmixing methods fail to take advantage of spatial information
in data. Besides, NMF is an inherently ill-posed problem,
which gets worse in the sparse acquisition of multispectral
data (from a small number of spectral bands) due to its
insuf�cient measurements and severe discontinuities in spectral
emissions. To overcome these limitations by exploiting the spatial
difference between multiple-target �uorophores and background
auto�uorescence (AF), we propose improved normalized cut
to automatically classify all multispectral pixels into target
�uorophores and background AF groups. We then initialize NMF
by extracting the endmember spectra of target/background
�uorescent components in the two groups, and impose a
L1/ 2-norm partial sparseness constraint on merely the
abundances of target �uorophores within hierarchical alternating
least squares framework of NMF. Experimental results based
on synthetic and in vivo �uorescence data show the superiority
of the proposed algorithm with respect to other state-of-the-art
approaches.

Index Terms—Fluorescence spectra, insuf�cient measure-
ments, multispectral imaging, nonnegative matrix factoriza-
tion (NMF), partial sparseness constraint, signal decomposition,
spatial information, target/background classi�cation.

I. INTRODUCTION

I N VIVO multispectral fluorescence imaging instrument
has been widely used to measure and/or record cellular

and subcellular biological processes in the life and medical
sciences, such as drug discovery and disease diagnosis [1].
The vast majority of applications of in vivo fluorescence
imaging are based on epi-illumination planar imaging, where
the exciting source and detectors reside on the same side of
the tissue and the measurements are acquired in reflectance
mode. Given exciting light sources, different fluorophores
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labeled with fluorescent dyes can emit fluorescence photons
from visible to near-infrared wavelengths to generate
multispectral images. The multispectral images involve
multispectral pixels represented by vectors, with each
component being a measurement corresponding to the
specific wavelengths. This fluorescence imaging instrument
enables the simultaneous use of multiple fluorophores to detect
and localize particular components of complex biomolecular
assemblies in the in vivo sample. For most fluorophores,
emission spectra are distinct, but often overlap and become
indistinguishable in the mixed multispectral images. Hence,
spectral unmixing (SUM) [2] is necessary in the multispectral
fluorescence imaging instrument to decompose the mixed mul-
tispectral images D into a product of pure spectral signatures
S, i.e., endmembers, and corresponding fractional abundance
C, indicating the proportion of each endmember. If the end-
member spectra Sare identified [3] in advance, C can be easily
estimated by the use of supervised SUM methods such as
least squares method. However, the factory-provided reference
endmember spectra used in the supervised SUM are uncertain
and always require extensive calibration efforts for the end-
member identification [3]. Therefore, the unsupervised SUM
has been developed to simultaneously estimate the spectra and
abundances without a priori knowledge about endmember
spectra.

In designing, implementing, and assessing the fluores-
cence imaging instrument, there are some practical challenges
must be overcome, among which the so-called autofluores-
cence (AF) [1], [4] can be produced by some proteins such as
collagens and other biological materials when they are excited
by appropriate visible light in in vivo fluorescence imaging.
Generally, AF originates from all possible background distur-
bances, which mainly include two kinds of sources [1], [4]:
1) the AF caused by the natural fluorescent molecules in
tissue and food and 2) some instrument-based noise, shading,
and leakage light from exciting filters. Therefore, AF stems
from various sources covering large background areas, and
has a dispersive spatial distribution. Furthermore, the AF
wavelength ranging from 400 to 700 nm is overlapped with
the emission spectra of most fluorophores. Due to these
extensive overlaps occurring between the fluorophores and
AF in the spatial and spectral distributions, it is difficult
to blindly separate multiple fluorophores from AF when the
AF is regarded as a constituent component by the current
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unsupervised SUM methods. Alternatively, some hardware-
based methods subtract an AF estimate from observation data
after using extra excitation filters or extra unlabeled samples
to acquire bare AF images [1], [4]. To successfully practice
these methods, we must carefully match the specific filter
sets with the spectral properties of both AF and fluorophores.
In many cases, none of the mentioned methods in the instru-
ment design can fully remove the AF from the fluorescence
imaging.

As an unsupervised data decomposition (or blind source
separation) technique, nonnegative matrix factorization (NMF)
has been successfully applied to blindly separate several source
signals in SUM [4], [5], biomedical source separation [6], [7],
and nondestructive testing [8]. However, there are three
shortcomings. First, NMF suffers from an ill convergence
problem such that starting from different initial search [9]
points results in different values for the elements of C and S
matrices. Especially, the ill convergence problem becomes
worse when there are insufficient measurements and low
spectral resolutions in the sparse acquisition of multispectral
fluorescence imaging data from a small number (e.g., 3–10)
of spectral bands. However, this sparse acquisition can be
fast and cost-effective in clinical applications. Therefore,
different NMF studies have proposed appropriate initial
values [9] and some additional regularization constraints
(such as sparseness [10], [11] and smoothness constraints [8])
to ensure the optimal NMF solution. Second, current
sparseness constraints [10], [11] for strengthening part-based
representation do not discriminate sparse components from
nonsparse components, limiting unmixing accuracy when
only some special targets of interest are sparse while a
specific background component is nonsparse. In fluorescence
imaging, some sparseness-constrained methods [4], [12], [13]
update the whole abundance matrix of all components so
that the abundance matrices of fluorescent targets and AF
may interfere with each other in NMF. Third, NMF does
not consider spatial information of neighboring pixels from
specific components to find more intuitive and interpretable
unmixing solution of abundance matrix C.

To overcome these limitations of NMF, this paper proposes
unsupervised target/background classification regularized
NMF (TBCR-NMF)1 with partial sparseness constraint.
The motivation is based on the following two facts. First,
multiple fluorophores tend to lo cally accumulate in specific
biological tissues so that their sparse spatial distributions are
usually confined to relatively small areas, while background
AF propagates at all directions and diffuses widely over large
areas. This spatial distribution difference between multiple
target fluorophores and background AF is preserved across
the whole spectral bands, although the sparse acquisition
introduces sharp discontinuity in the spectral emissions across
the multiple spectral bands. Second, the set of pixels in
the multiple localized fluorophor es similarly exhibits high
intensities within local patches and can be classified into
a single target group, while the set of pixels in the large
background areas contains low intensity pixels that can

1http://www.escience.cn/people/bjqin/research.html

be grouped as a single background group. This inherent
target/background contrast is still preserved across the
multiple spectral bands in the fluorescence imaging.

With the above analysis facilitating the development of
unsupervised target/background classification without any
training samples [2], [14], we propose TBCR-NMF from
the following two aspects. First, an unsupervised target/
background classification is implemented as a preprocessing
that extracts endmembers and corresponding abundances
to optimally initialize NMF. In solving the local minimum
problem of NMF, most initialization methods [15], [16] have
not used the spatial information in the source spectral data and
therefore cannot accurately identify the endmembers (and their
corresponding abundance) for the near-optimal starting point
for NMF. In this paper, initial target/background classification
is helpful to discriminably extract the endmembers from the
localized target regions and large background regions. Then,
we initialize the abundance matrix C by fixing the spectra S
during the first ten iterations of NMF. Second, the T BCR-NMF
facilitates optimal fluorescence unmixing by imposing partial
sparseness constraints on the abundances of multiple target
fluorophores but not on the abundance of diffusive AF. In sum-
mary, classifying mixed multispectral data into two groups is a
useful strategy for initializing and regularizing NMF, such that
the target/background classification can transfer the classified
spatial structures [17] into the accurate and unique solution of
NMF-based unmixed results. The most recent trend of utilizing
the spatial information and sparsity for unmixing/classification
of multispectral image has enabled the realization of
some new computing model in multispectral/hyperspectral
imaging [18]–[21].

Traditional multispectral image classification [22] methods,
such as unsupervised (e.g., K-means, kernel-based nonpara-
metric method) and supervised (e.g., maximum likelihood,
support vector machine), have considered the pixel-wise spec-
tral dissimilarity between two pixels to group the image data
into a finite number of discrete classes without using spatial
dependence. To reduce the labeling uncertainty that exists
when only the spectral information is used, recent research
has introduced the spatial contextual information into the joint
spectral–spatial classification, which generally exploited the
highly correlated regional information (entropy, variance, etc.)
extracted from the standard (such as the crisp neighbor set
employed by Markov random field modeling) or adaptive
neighbor system in the image. Rather than defining a crisp
neighbor set containing insufficient neighboring samples for
every pixel, image segmentation [22] is another approach
to include spatial information in classification, enabling the
large neighborhood definition by partitioning an image into
nonoverlapping large homogeneous regions. Many algorithms
have been proposed to address image segmentation problem,
such as region-growing algorithms, and watershed methods.
In this paper, only binary image segmentation implementing
target/background homogeneous region partition is desirable
for the subsequent target/background classification.

As an excellent binary image segmentation algorithm,
the original normalized cut (Ncut) [23] is done by
partitioning all graph nodes (i.e., pixels) of whole image into
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two disjoint parts. Rather than focusing on local features
and their neighboring consistencies in the image data,
Ncut aims at extracting the global impression of an
image. It is assumed to be capable of utilizing the distinct
global dissimilarities between target fluorophores and
background AF in the whole fluorescence images to
implement target/background segmentation. However, there
are indeed more than two classes in the multispectral
fluorescence images in the pre sence of multiple fluorophore
targets. It is possible that the spectral emissions of some
fluorescence targets are more similar to the AF spectral
emission than other fluorescence targets. In this case,
Ncut-based method will lead to a wrong target/background
classification by grouping some fluorescence targets into the
background AF group. To ensure accurate target/background
classification, we modify classical Ncut method [23] to
recursively repartition the large group of previous bipartition
result if the number of groups segmented by Ncut is less
than the number of endmembers in the fluorescence imaging.
As a result, all the pixels of the multispectral images are
classified into several groups, which further are simply
merged into two main groups: the largest group is the
background AF group and the rest of the smaller groups
will join together into the target fluorescence group. Based
on the improved Ncut-based classification, this paper has the
following two contributions for the fluorescence SUM. First,
by performing improved Ncut-based bipartitioning of target
fluorescences and background AF groups, we propose target/
background classification to benefit the endmember identifi-
cation from the target and background groups for accurately
initializing NMF. Second, this target/background classification
facilitates imposing L1/2-norm [24], [25] partial sparseness
constraint on the abundances of the target fluorescent group
but not on that of AF group in the NMF, which is based on
hierarchical alternating least squares (HALS) framework. The
remainder of this paper is organized as follows. Section II
describes the idea and the details of the proposed TBCR-NMF
algorithm. Section III provides experimental results on syn-
thetic and in vivo fluorescence imaging data. The conclusion
and discussion are given in Section IV.

II. MATERIALS AND METHODS

The fluorescence image data acquired with multispectral
imaging instruments comprise four contiguous bands in this
paper. A multispectral data set is usually stacked as an image
cube and thus can be treated as a 3-D volumetric data set
with two spatial axes (X and Y) and one spectral axis (λ),
as illustrated in Fig. 1. From a data-flow point of view, the
flowchart of the proposed algorithm can be characterized as
the following (see Fig. 1). First, a multispectral image cube
is iteratively segmented into multiple separated homogeneous
regions using the improved Ncut algorithm. Second, we further
group these regions into target and background groups by
classifying the largest region into the background group while
merging all other small regions into the target group. Third,
endmember extraction methods are employed to extract the
spectral signatures S of the target fluorescences and AF from
the target and background regions for the NMF initialization.
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where assoc(A, V) = ∑
u∈A,t∈V w(u, t) is the total connec-

tions from nodes in A to all nodes in the graph and assoc(B, V)
is similarly defined. The Ncut grouping algorithm consists of
the following steps. First, let H be an N × N diagonal matrix
with h on its diagonal and N be the number of the nodes
and h(i ) = ∑

j w(i , j ), where the weight w(i , j ) is defined

as w(i , j ) = e−(‖xi −x j ‖2/σ ), with xi and x j representing the
normalized spectra of nodes i and j , which have zero-mean
and unit variance, respectively. In addition, σ = 0.1 is a
positive scaling factor determining the sensitivity of w(i , j )
to the spectrum difference between nodes i and j ; Then, we
solve (H − W)v = ηHv for eigenvectors v with the smallest
eigenvalues η, where W is N × N symmetric weight matrix
with the element being w(i , j ). At last, use the second smallest
eigenvector v1 and the splitting value 0.4 to bipartition graph,
i.e., the bipartition is implemented by grouping the i th node
into A if the i th component of eigenvector v1 is larger than 0.4,
B otherwise.

For the multiple fluorophores in in vivo fluorescence
imaging, there are more than two classes in the fluorescence
imaging. Therefore, the spectral emissions of some
fluorescence targets are more similar to those of AF than
other fluorescence targets, such that Ncut will lead to a wrong
target/background classification by aggregating some fluores-
cence targets into the background AF group. To avoid this
misclassification, we need to modify the recursive two-way
Ncut method. Considering that background AF (including
various background noises) has a dispersive spatial distribution
while multiple fluorophores are lo cally accumulated at specific
locations, we assume that the pure background AF regions are
larger than the target fluorophore regions. Through Ncut-based
bipartition, the larger group is either pure AF region or the
regions that contain AF and some target fluorophores. In the
latter case, the larger group will be bipartitioned again until
all target fluorophores are separated from the AF region.
Because the aim of the improved recursive Ncut method is
to classify all pixels of the whole fluorescence region into
two classes, background AF and target fluorescence groups,
all the separated smaller regions except the largest AF region
are finally combined together into the target fluorescence
group.

Based on the above analysis, we propose an improved
recursive Ncut method. First, to use the Ncut method,
each 992 × 992 spectral image is decimated into a size of
100 × 100 pixels. Decreasing the number of graph nodes from
near N = 1 000 000 to N = 10 000 by this image subsampling
can solve the large graph problem, which consumes too much
memory and requires huge computational complexity in
handling large-scale weight matrix W (with N × N elements)
for the graphical representation and generalized eigenvalue
computation. In our experiments, changing image size from
200 × 200 pixels to 100 × 100 pixels can obviously decrease
Ncut computation time from 50.6 to 2.8 s, but does not
have an adverse effect on target/background classification,
because the Ncut method’s graph-ba sed generalized eigenvalue
computation is less sensitive to the spatial information lost dur-
ing subsampling than other local feature-based segmentation.
Besides, even if small noisy misclassification occurs, it cannot

affect the final TBCR-NMF’s performance, because we only
require an approximate global target/background classification
for further decomposition refinement by TBCR-NMF itself.
Second, after the initial Ncut-based bipartition, only the large
cluster of the bipartition result will be chosen for subsequent
bipartition. Third, we recursively repartition the large cluster
of previous bipartition result if the number of intermediate
clusters segmented by Ncut is less than the number of
endmembers in the fluorescence imaging. Finally, the largest
group is considered as the background AF group and all the
rest of smaller groups are merged into the target fluorescence
group. The intermediate target/background classification
result after improved Ncut segmentation is shown in Fig. 1,
where the different colors mean the different intermediate
clusters sequentially segmented by the improved Ncut. The
final target fluorescence group is formed by grouping all the
small clusters except the large cluster of AF region.

B. Endmember Extraction for NMF Initialization

To find the optimal product CS that best approaches
the mixed image data matrix D ∈ R

N×L+ (N is the total
pixel number in a single image and L is the spectral band
number), HALS-based NMF [26]–[28] is adopted to perform
sequential constrained minimization on a set of subobjective
functions F(C:k, Sk:) = (1/2)‖Rk − C:kSk:‖2

2, where each
column C:k of C ∈ R

N×K+ represents the spatial distribution
of one endmember component, K is the number of the
endmember, and each row Sk: of S ∈ R

K×L+ represents the
spectrum of a specific endmember. for k = 1, 2, . . . , K ,
Rk = D − ∑

i �=k C:i Si :.
To initialize NMF, we use the pixels of two groups to deter-

mine the corresponding spectra for the different fluorescence
components. We assume that the first ( K − 1) constituent
components represent the fluorophores and the last component
describes the AF. AF’s initialized spectrum ( SK ) is set to
the average spectrum of all AF pixels, while the spectra
S1, S2, . . . , SK−1



878 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 65, NO. 4, APRIL 2016

the L1/2-norm as

F(C:k, Sk:) = 1

2
‖Rk − C:kSk:‖2

2 + 2θ

N∑

i=1

(Cik)1/2 (2)

where the θ is a regularized parameter to balance the tradeoff
between the approximation accuracy and the sparseness of the
multiple fluorophores’ abundances. The gradient derivation
of F(C:k, Sk:) with respect to C:k is

∂ F(C:k, Sk:)
∂C:k

= −(Rk − C:kSk:)Sk:T + θ(C:k)−1/2 (3)

where C−1/2
:k is given by the element-wise square root for each

entry in the vector C:k. By setting (3) to zero, we can get the
updating rule of C:k. However, it involves a rather high com-

putation cost due to the computation of the term C−1/2
:k . To cir-

cumvent this problem, we approximate C:k in the θ(C:k)−1/2

term by its estimation Ĉ:k obtained from the previous update,
rather than compute the term C:k directly. Hence, (3) takes a
simplified and more computationally efficient form

∂ F(C:k, Sk:)
∂C:k

= −(Rk − C:kSk:)Sk:T + θĈ:k
−1/2

. (4)

By setting (4) to zero, the rule of updating C:k takes the
following form:

C:k = max
(
eps, (RkSk:T − θ(C:k)−1/2 )/‖Sk:‖2

2

)
(5)

where eps is a very small constant (∼10−16) and prevents
from dividing by zero. The rules of updating Sk: for (2) is

Sk: = max
(
eps, C:kT Rk/‖C:k‖2

2

)
. (6)

For k = K , the subobjective function has no sparseness
constraint, and the corresponding updating rules are the same
as the other parts of the HALS optimization.

For the convenience of parameter setting, we convert the
regularized parameter θ of TBCR-NMF into a desired sparsity
value φ [10], which represents the sparseness degree that we
expect the abundances of multiple fluorophores to reach. The
sparsity value φ, being 0 for nonsparse results and 1 for
extremely sparse results, can be defined as

φ(Ck) =
√

N − (∑N
n=1 |cnk|/

√∑N
n=1 c2

nk

)

√
N − 1

(7)

where Ck ∈ R
N×1+ is the kth column of abundance matrix C,

and cnk is each element at Ck with n = 1, 2, . . . , N.
Specifically, for each fluorophore’s abundance C:k that has
a corresponding regularized parameter θk, we use a method
similar to that in [31] to directly control the θk value:
θk is initialized to 0.001, and after each iteration, the current
sparsity φ is computed by (7) for the abundance C:k; then θk is
increased by 5% if the current sparsity is less than the desired
sparsity value φ; otherwise, θk is decreased by 5%.

The detailed pseudocode of partially sparse NMF algorithm
is summarized in Algorithm 1. The algorithm computation
is terminated when the absolute value of difference between
the two adjacent objective functions is less than 10−4, or the
maximum number of iterations exceeds 1000.

Algorithm 1 Partially Sparse NMF

Input : Data matrix D ∈ R
N×L+ and initial C ∈ RN×K+D

N�RK×L+D
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Fig. 2. Synthetic Data. (a)–(c) Abundances of AF488, AF555, and AF. (d) Corresponding emission spectra for AF488 (green line), AF555 (blue line), and
AF (red line). (e) Mixed fluorescence image acquired at 555 nm. (f) Groupi ng result obtained with improved Ncut target/background classification.

all endmember components are used to evaluate the overall
performance of estimating spectral signatures and their corre-
sponding abundances, respectively.

A. Synthetic Data

We use two fluorescence parts, Alexa Fluor 488 and
Alexa Fluor 555 (AF488, AF555; Invitrogen, Carlsbad,
USA), and one AF part to build a simulated phantom [4] in
Fig. 2. The spectral signatures of fluorescence parts are fitted
emission spectral curves of AF488 and AF555 at the spectral
wavelengths from 480 nm to 650 nm with interval of 5 nm,
while AF’s spectral signature is a slowly varying curve in the
same range [see Fig. 2(d), green line for AF488, blue line
for AF555, and red line for AF]. The abundances of AF488
and AF555 consist of two parts: one part is pure fluorescence
dye and the other part is mixed with AF488 and AF555 [see
Fig. 2(a) and (b)]. The mixed part is at the top-left of the
phantom, while the pure parts are at the bottom-left for AF488
in Fig. 2(a) and the bottom-right for AF555 in Fig. 2(b).
According to the sparsity definition in (7), the true sparsity of
the abundance of AF488 (or AF555) is 0.85. Finally, the total
simulated phantom is obtained by adding the two fluorescence
parts and the AF part together, and the abundance intensity
ratio of AF to fluorophores (AF/F intensity ratio) is 0.3.
Fig. 2(e) shows the mixed fluorescence image acquired at
the spectral band of 555 nm wavelength. Fig. 2(f) shows
the classification result of the synthetic data. The target
fluorescence group is obtained by combining three different
fluorescence regions (with different colors), which are

sequentially isolated from the background AF group after
three iterations of the improved recursive Ncut computation.

We test the above-mentioned algorithms’ unmixing perfor-
mances with the metrics of SAD and RMSE, which have
averages (bars) and standard deviations (error bars) resulting
from the 20 runs of each algorithm. The algorithms’ per-
formances are dependent on the initial sparsity parameter φ
(or the regularized parameter θ ). Too small values of φ and θ
cannot represent a reasonable sparsity of unmixed results while
too large values of φ and θ will lead to excessive sparsity and
inaccurate unmixed results. Considering the general sparsity
of abundances for multiple fluor ophores in preclinical appli-
cations, we select a series of φ values from 0.5 to 0.9 with
an interval of 0.05 to demonstrate the effects of different
initial sparsity values on the performance of S-NMF and
TBCR-NMF. As for L1-HALS, the θ value is 10−4, 5 × 10−4,
10−3, 5 × 10−3, 0.01, 0.05, 0.1, 0.5, and 1.0.

The performance metrics for different parameters of θ and φ
are shown in Fig. 3 when the AF/F intensity ratio is set to 0.3
with no noise added and with signal-to-noise ratio (SNR)
being set to SNR = 15 dB. L1-HALS’s performance
has been influenced by the regularized parameter θ . The
SAD and RMSE achieved with L1-HALS are the largest
compared with other algorithms. For S-NMF and TBCR-NMF,
their unmixing performances also have been influenced by the
different values of initial sparsity parameter φ, which should
be set to the true sparsity (0.85) of the abundance of multiple
fluorophores in ideal situations. Therefore, too small or too
large φ cannot produce good unmixed results for S-NMF and
TBCR-NMF. In Fig. 3(a), when φ is smaller than 0.65 or larger
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Fig. 3. Algorithm performances (SAD and RMSE) for different values of parameter θ and φ when (a) no noise is added and (b) noise is added with
SNR = 15 dB.

than 0.85, the SAD and RMSE become large and the unmixed
results obtained with S-NMF and TBCR-NMF become worse.
However, TBCR-NMF obtains the smallest SAD and RMSE
among the three algorithms when the sparsity φ changes from
0.50 to 0.90 (or θ changes from 0.0001 to 1.0000). When
the sparsity φ value is set to 0.90 (or 0.50), the poorest
performances are achieved by all three algorithms, among
which the TBCR-NMF is still the best.

The SNR in Fig. 3(b) is set to 15 dB, so that there is
strong noise in the fluorescence data and the performance
of all algorithms degrades with increasing noise levels. The
proposed TBCR-NMF still achieves the smallest SAD and
RMSE when φ ranges from 0.5 to 0.9. The RMSE achieved
by TBCR-NMF is relatively steady when φ ranges from
0.5 to 0.85. When the initial sparsity value φ exceeds the
true sparsity (0.85), the values of SAD and RMSE obtained
by TBCR-NMF increase obviously, but are still smaller than
those obtained by other algorithms. Therefore, TBCR-NMF
can achieve the best unmixed results when there is strong
noise in the fluorescence data.

As low AF/F ratio will highlight multiple localized fluo-
rophores from the background AF, it essentially makes the
mixed spectral data sparser than the high AF/F ratio and
the corresponding NMF problem will have sparser solutions
than the high AF/F ratio. Therefore, the NMF performance
is largely dependent on the AF/F ratio. For simulation exper-
iments, the AF/F intensity ratio ranges from 0.1 to 0.9 with
interval of 0.2. The φ and θ parameters are set to 0.8 and 0.01,
respectively, to achieve the best unmixing performance for all
algorithms.

Fig. 4(a) shows the different SAD and RMSE values for
the different AF/F intensity ratios in the noiseless data. The
initialization is Randommethod for L1-HALS, Pure method

for S-NMF, and Graph method for TBCR-NMF. Fig. 4(a)
shows that the performances of L1-HALS and S-NMF
algorithms improve with decreasing AF/F intensity ratio. The
unmixed results obtained with L1-HALS are worst compared
with other results. However, TBCR-NMF is not sensitive
to the AF/F ratio and obtains the smallest SAD and RMSE
values in all different AF/F intensity ratios.

Fig. 4(b) shows the performance dependence on the
different initialization methods, when AF/F ratio, φ and θ , are
set to 0.3, 0.8, and 0.001, respectively. L1-HALS is initialized
with Random, Graph, and Pure methods, while S-NMF and
TBCR-NMF are initialized with Graph and Pure methods.
The SAD and RMSE values of L1-HALS using different
initializations are similar and the worst among the three
algorithms due to the sparseness constraint being imposed
on all abundances. S-NMF’s performance improves with the
Pure initialization having
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Fig. 4. (a) Algorithm performances for different values of AF/F intensity ratio. (b) Algorithm performances for different initialization methods.

Besides the L1-HALS and S-NMF, we also use two
NMF-based SUM algorithms: nonnegative matrix underap-
proximation (NMU)2 [34] and NMF with L0 constraint
(L0-NMF) [35] for comparison. NMU solves NMF problem
with additional underapproximation constraint CS ≤ D which
allows to obtain better part-based decompositions, while
L0-NMF introduces sparseness into all abundances via the
L0-norm constraint. All algorithms assume that the number
of endmembers is 3, or K = 3. The TBCR-NMF, L1-HALS,
NMU, and L0-NMF methods are not initialized with a priori
knowledge of calibrated endmember spectra except the
S-NMF method. The parameter φ for L0-NMF, S-NMF, and
TBCR-NMF is 0.75, the parameter θ for L1-HALS is 0.005.
To reduce computation cost, we use Otsu’s [36] method for
preprocessing to obtain the mouse body mask with whole
fluorescence regions of interest, whereby all algorithms are
applied to the fluorescence data within the mask only. For
the best visual effect, all the observations and unmixed results
(spatial distribution of all constituent components) are shown
with rainbow pseudocolor and overlaid on the gray-scale
photographic image of corresponding mouse.

We first give two in vivo BALB/c mouse experimen-
tal results to validate the proposed method’s performance.

2https://sites.google.com/site/nicolasgillis/code

All animal experiments in this paper were approved by
our institutional review board. In experiment I, AF488
and Alexa Fluor 594 (AF594; Invitrogen, Carlsbad, USA)
fluorescent dyes are diluted to 0.1 μgml−1. AF488 is injected
at the bottom of the body with 20 ng dye, while AF594 is
injected near the neck with the same quantity, and a mixture
of each dye with 10 ng is located at the middle portion of
the body. These three injections are not exactly controlled
with the same depth in tissues. Fig. 5(a)–(d) shows four raw
fluorescence images acquired at 542, 579, 624, and 716 nm
spectral bands. The first two images are excited at 474 nm
and the last two images at 565 nm. The calibrated spectra of
AF488, AF594, and AF [see Fig. 6(a)] are acquired at these
four emission filters by precalibration ex vivo experiments
in the same imaging conditions, while the spectrum of AF
is the average spectrum acquired in some chosen regions
of mouse with no fluorescent dyes. Fig. 6(a) displays that
AF488, AF594 and AF have overlapping emission spectra.
Fig. 6(b) and (c) also shows the calibrated spectra of AF488,
AF555, and AF, acquired ex vivo at the 525, 542, 579,
and 624 nm spectral bands for the next two in vivo fluores-
cence imaging experiments in the following section.

Fig. 5(e) shows the target/background classification result
where the multiple fluorophores are classified as a target
group (red color) and separated from the whole background
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Fig. 7. Abundances (expressed as 1-D vectors) C of AF488, AF594, AF, and their spectra S from top row to bottom row for experiment I. The unmixed
results obtained with (a)–(d) NMU, (e)–(h) L0-NMF, (i)–(l) L1-HALS, (m)–(p) S-NMF, and (q)–(t) TBCR-NMF.

There are some missing parts of AF488 in the middle portion
of BALB/c mouse in Fig. 5(l) for L1-HALS, which also
falsely makes the unmixed background AF [Fig. 5(n)] appear
sparser and brighter than it actually is. The TBCR-NMF
and S-NMF can separate the fluorescence targets from AF
in Fig. 5(o)–(q) and Fig. 5(r)–(t), respectively. However, the
unmixed results obtained with TBCR-NMF are smoother and
clearer than S-NMF.

The unmixed results of abundances C (expressed as
1-D vectors) and endmember spectra S are illustrated
in Fig. 7(a)–(d) for NMU, Fig. 7(e)–(h) for L0-NMF,
Fig. 7(i)–(l) for L1-HALS, Fig. 7(m)–(p) for S-NMF and
Fig. 7(q)–(t) for TBCR-NMF, respectively. The TBCR-NMF
algorithm obtains more accurate unmixed fluorescence
abundances compared with the other algorithms. All
algorithms have the highest abundance intensities that
correspond to the true pixel positions of fluorescence targets.
The abundances of AF488 and AF594 are wide and contain
the unwanted AF parts that are not removed with NMU in
Fig. 7(a) and (b) and L0-NMF in Fig. 7(e) and (f). This
AF remainder also can be confirmed by AF’s abundances
[Fig. 7(c) and (g)] obtained with both algorithms. The
L1-HALS [Fig. 7(k)] and S-NMF [Fig. 7(o)] have abnormal
(too large) values in the abundances of AF, except that

the TBCR-NMF [Fig. 7(s)] has slowly varying abundances
of AF. More importantly, the spectra estimated with S-NMF
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TABLE I

SAD AND SAD RESULTS ON THE In Vivo EXPERIMENTS I AND II (THE SMALLER VALUES MEAN BETTER RESULTS.
THE NUMBER IN BOLD REPRESENTS THE BEST PERFORMANCE)
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Fig. 9. Abundances (expressed as 1-D vectors) C of AF488, AF555, AF, and their spectra S from top row to bottom row for experiment II. The unmixed
results obtained with (a)–(d) NMU, (e)–(h) L0-NMF, (i)–(l) L1-HALS, (m)–(p) S-NMF, and (q)–(t) TBCR-NMF.

The unmixed abundances C (expressed as 1-D vectors)
and endmember spectra S are illustrated in Fig. 9(a)–(d) for
NMU, Fig. 9(e)–(h) for L0-NMF, Fig. 9(i)–(l) for L1-HALS,
Fig. 9(m)–(p) for S-NMF and Fig. 9(q)–(t) for TBCR-NMF,
respectively. The TBCR-NMF achieves the most accurate
unmixed results compared with other algorithms. Particularly,
the first row in Fig. 9 displays that AF488 abundance inten-
sities obtained with other algorithms still contain AF parts
that are not fully removed. The second row in Fig. 9 shows
that the AF parts have made contributions to the AF555
abundances with the NMU, L0-NMF and L1-HALS algo-
rithms except the TBCR-NMF and S-NMF. The S-NMF has
abnormal (too large) values for the AF abundance in Fig. 9(o),
while TBCR-NMF can get slowly varying abundances of AF
in Fig. 9(s). In general, the unmixed abundances of AF488
and AF555 from the TBCR-NMF algorithm [Fig. 9(q) and (r)]
are more sparse than other algorithms. Moreover, the spectra
obtained with NMU in Fig. 9(d), L0-NMF in Fig. 9(h),
and L1-HALS in Fig. 9(l) are clearly different from the cali-
brated spectra in Fig. 6(b). However, the spectra obtained with
S-NMF in Fig. 9(p) and TBCR-NMF in Fig. 9(t) are more
accurate than other algorithms.

The SAD and the average SAD values of three unmixed
endmembers for in vivo experiment II are shown in Table I.

We can see that the TBCR-NMF gets the smallest SAD
(0.0961) and the best unmixing performance.

D. In Vivo Experiments III and IV

In this section, using another two in vivo BALB/c mouse
experiments, we further compare the proposed method
with three recently published unmixing methods which
also utilize the spatial information in the multispectral
images. Specifically, besides the S-NMF that has good
unmixing performance, we also use the following methods
for performance comparison: the beta compositional model
based spatial-spectral (BCM-spatial) algorithm3 [18], sparse
unmixing via variable splitting augmented Lagrangian and
total variation (SparseTV) algorithm4 [19], and regularized
simultaneous forward-backward greedy (RSFoBa) algorithm5

[20]. The BCM-spatial method assumes beta-distributed
endmembers and identifies pixels with similar proportion
values to the pixel under unmixing by identifying the
K-nearest spatial-spectral neighbors. The SparseTV algorithm
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Fig. 10. (a)–(d) Raw fluorescence (AF488 and AF 555) images for experiment III acquired at the 525, 542, 579, and 624 nm emission filters respectively,
the first two images are excited at 474 nm and the last two images at 500 nm . (e) Classification results. The different unmixed results obtained
with (f)–(h) BCM-spatial, (i)–(k) SparseTV, (l)– (n) RSFoBa, (o)–(q) S-NMF, and (r)–(t) TBCR-NMF.

includes the total variation regularization to the classical
sparse regression formulation to exploit the spatial-contextual
information present in the multispectral images. The RSFoBa
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TABLE II

SAD AND SAD RESULTS ON THE In Vivo EXPERIMENTS III AND IV (THE SMALLER VALUES MEAN BETTER RESULTS.
THE NUMBERS IN BOLD REPRESENT THE BEST PERFORMANCE)
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