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Target/Background ClassiÞcation Regularized
Nonnegative Matrix Factorization

for Fluorescence Unmixing
Binjie Qin, Member, IEEE, Chen Hu, and Shaosen Huang

Abstract—Nonnegative matrix factorization (NMF) is usually
applied to multispectral �uorescence imaging for �uorescence
unmixing. Unfortunately, most NMF-based �uorescence
unmixing methods fail to take advantage of spatial information
in data. Besides, NMF is an inherently ill-posed problem,
which gets worse in the sparse acquisition of multispectral
data (from a small number of spectral bands) due to its
insuf�cient measurements and severe discontinuities in spectral
emissions. To overcome these limitations by exploiting the spatial
difference between multiple-target �uorophores and background
auto�uorescence (AF), we propose improved normalized cut
to automatically classify all multispectral pixels into target
�uorophores and background AF groups. We then initialize NMF
by extracting the endmember spectra of target/background
�uorescent components in the two groups, and impose a
L1/ 2-norm partial sparseness constraint on merely the
abundances of target �uorophores within hierarchical alternating
least squares framework of NMF. Experimental results based
on synthetic and in vivo �uorescence data show the superiority
of the proposed algorithm with respect to other state-of-the-art
approaches.

Index Terms—Fluorescence spectra, insuf�cient measure-
ments, multispectral imaging, nonnegative matrix factoriza-
tion (NMF), partial sparseness constraint, signal decomposition,
spatial information, target/background classi�cation.

I. I NTRODUCTION

I N VIVO multispectral ßuorescence imaging instrument
has been widely used to measure and/or record cellular

and subcellular biological processes in the life and medical
sciences, such as drug discovery and disease diagnosis [1].
The vast majority of applications ofin vivo ßuorescence
imaging are based on epi-illumination planar imaging, where
the exciting source and detectors reside on the same side of
the tissue and the measurements are acquired in reßectance
mode. Given exciting light sources, different ßuorophores
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labeled with ßuorescent dyes can emit ßuorescence photons
from visible to near-infrared wavelengths to generate
multispectral images. The multispectral images involve
multispectral pixels represented by vectors, with each
component being a measurement corresponding to the
speciÞc wavelengths. This ßuorescence imaging instrument
enables the simultaneous use of multiple ßuorophores to detect
and localize particular components of complex biomolecular
assemblies in thein vivo sample. For most ßuorophores,
emission spectra are distinct, but often overlap and become
indistinguishable in the mixed multispectral images. Hence,
spectral unmixing (SUM) [2] is necessary in the multispectral
ßuorescence imaging instrument to decompose the mixed mul-
tispectral imagesD into a product of pure spectral signatures
S, i.e., endmembers, and corresponding fractional abundance
C, indicating the proportion of each endmember. If the end-
member spectraSare identiÞed [3] in advance,C can be easily
estimated by the use of supervised SUM methods such as
least squares method. However, the factory-provided reference
endmember spectra used in the supervised SUM are uncertain
and always require extensive calibration efforts for the end-
member identiÞcation [3]. Therefore, the unsupervised SUM
has been developed to simultaneously estimate the spectra and
abundances withouta priori knowledge about endmember
spectra.

In designing, implementing, and assessing the ßuores-
cence imaging instrument, there are some practical challenges
must be overcome, among which the so-called autoßuores-
cence (AF) [1], [4] can be produced by some proteins such as
collagens and other biological materials when they are excited
by appropriate visible light inin vivo ßuorescence imaging.
Generally, AF originates from all possible background distur-
bances, which mainly include two kinds of sources [1], [4]:
1) the AF caused by the natural ßuorescent molecules in
tissue and food and 2) some instrument-based noise, shading,
and leakage light from exciting Þlters. Therefore, AF stems
from various sources covering large background areas, and
has a dispersive spatial distribution. Furthermore, the AF
wavelength ranging from 400 to 700 nm is overlapped with
the emission spectra of most ßuorophores. Due to these
extensive overlaps occurring between the ßuorophores and
AF in the spatial and spectral distributions, it is difÞcult
to blindly separate multiple ßuorophores from AF when the
AF is regarded as a constituent component by the current

0018-9456 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



QIN et al.: TARGET/BACKGROUND CLASSIFICATION REGULARIZED NMF 875

unsupervised SUM methods. Alternatively, some hardware-
based methods subtract an AF estimate from observation data
after using extra excitation Þlters or extra unlabeled samples
to acquire bare AF images [1], [4]. To successfully practice
these methods, we must carefully match the speciÞc Þlter
sets with the spectral properties of both AF and ßuorophores.
In many cases, none of the mentioned methods in the instru-
ment design can fully remove the AF from the ßuorescence
imaging.

As an unsupervised data decomposition (or blind source
separation) technique, nonnegative matrix factorization (NMF)
has been successfully applied to blindly separate several source
signals in SUM [4], [5], biomedical source separation [6], [7],
and nondestructive testing [8]. However, there are three
shortcomings. First, NMF suffers from an ill convergence
problem such that starting from different initial search [9]
points results in different values for the elements ofC andS
matrices. Especially, the ill convergence problem becomes
worse when there are insufÞcient measurements and low
spectral resolutions in the sparse acquisition of multispectral
ßuorescence imaging data from a small number (e.g., 3Ð10)
of spectral bands. However, this sparse acquisition can be
fast and cost-effective in clinical applications. Therefore,
different NMF studies have proposed appropriate initial
values [9] and some additional regularization constraints
(such as sparseness [10], [11] and smoothness constraints [8])
to ensure the optimal NMF solution. Second, current
sparseness constraints [10], [11] for strengthening part-based
representation do not discriminate sparse components from
nonsparse components, limiting unmixing accuracy when
only some special targets of interest are sparse while a
speciÞc background component is nonsparse. In ßuorescence
imaging, some sparseness-constrained methods [4], [12], [13]
update the whole abundance matrix of all components so
that the abundance matrices of ßuorescent targets and AF
may interfere with each other in NMF. Third, NMF does
not consider spatial information of neighboring pixels from
speciÞc components to Þnd more intuitive and interpretable
unmixing solution of abundance matrixC.

To overcome these limitations of NMF, this paper proposes
unsupervised target/background classiÞcation regularized
NMF (TBCR-NMF)1 with partial sparseness constraint.
The motivation is based on the following two facts. First,
multiple ßuorophores tend to locally accumulate in speciÞc
biological tissues so that their sparse spatial distributions are
usually conÞned to relatively small areas, while background
AF propagates at all directions and diffuses widely over large
areas. This spatial distribution difference between multiple
target ßuorophores and background AF is preserved across
the whole spectral bands, although the sparse acquisition
introduces sharp discontinuity in the spectral emissions across
the multiple spectral bands. Second, the set of pixels in
the multiple localized ßuorophores similarly exhibits high
intensities within local patches and can be classiÞed into
a single target group, while the set of pixels in the large
background areas contains low intensity pixels that can

1http://www.escience.cn/people/bjqin/research.html

be grouped as a single background group. This inherent
target/background contrast is still preserved across the
multiple spectral bands in the ßuorescence imaging.

With the above analysis facilitating the development of
unsupervised target/background classiÞcation without any
training samples [2], [14], we propose TBCR-NMF from
the following two aspects. First, an unsupervised target/
background classiÞcation is implemented as a preprocessing
that extracts endmembers and corresponding abundances
to optimally initialize NMF. In solving the local minimum
problem of NMF, most initialization methods [15], [16] have
not used the spatial information in the source spectral data and
therefore cannot accurately identify the endmembers (and their
corresponding abundance) for the near-optimal starting point
for NMF. In this paper, initial target/background classiÞcation
is helpful to discriminably extract the endmembers from the
localized target regions and large background regions. Then,
we initialize the abundance matrixC by Þxing the spectraS
during the Þrst ten iterations of NMF. Second, the TBCR-NMF
facilitates optimal ßuorescence unmixing by imposing partial
sparseness constraints on the abundances of multiple target
ßuorophores but not on the abundance of diffusive AF. In sum-
mary, classifying mixed multispectral data into two groups is a
useful strategy for initializing and regularizing NMF, such that
the target/background classiÞcation can transfer the classiÞed
spatial structures [17] into the accurate and unique solution of
NMF-based unmixed results. The most recent trend of utilizing
the spatial information and sparsity for unmixing/classiÞcation
of multispectral image has enabled the realization of
some new computing model in multispectral/hyperspectral
imaging [18]Ð[21].

Traditional multispectral imageclassiÞcation [22] methods,
such as unsupervised (e.g., K-means, kernel-based nonpara-
metric method) and supervised (e.g., maximum likelihood,
support vector machine), have considered the pixel-wise spec-
tral dissimilarity between two pixels to group the image data
into a Þnite number of discrete classes without using spatial
dependence. To reduce the labeling uncertainty that exists
when only the spectral information is used, recent research
has introduced the spatial contextual information into the joint
spectralÐspatial classiÞcation, which generally exploited the
highly correlated regional information (entropy, variance, etc.)
extracted from the standard (such as the crisp neighbor set
employed by Markov random Þeld modeling) or adaptive
neighbor system in the image. Rather than deÞning a crisp
neighbor set containing insufÞcient neighboring samples for
every pixel, image segmentation [22] is another approach
to include spatial information in classiÞcation, enabling the
large neighborhood deÞnition by partitioning an image into
nonoverlapping large homogeneous regions. Many algorithms
have been proposed to address image segmentation problem,
such as region-growing algorithms, and watershed methods.
In this paper, only binary image segmentation implementing
target/background homogeneous region partition is desirable
for the subsequent target/background classiÞcation.

As an excellent binary image segmentation algorithm,
the original normalized cut (Ncut) [23] is done by
partitioning all graph nodes (i.e., pixels) of whole image into
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two disjoint parts. Rather than focusing on local features
and their neighboring consistencies in the image data,
Ncut aims at extracting the global impression of an
image. It is assumed to be capable of utilizing the distinct
global dissimilarities between target ßuorophores and
background AF in the whole ßuorescence images to
implement target/background segmentation. However, there
are indeed more than two classes in the multispectral
ßuorescence images in the presence of multiple ßuorophore
targets. It is possible that the spectral emissions of some
ßuorescence targets are more similar to the AF spectral
emission than other ßuorescence targets. In this case,
Ncut-based method will lead to a wrong target/background
classiÞcation by grouping some ßuorescence targets into the
background AF group. To ensure accurate target/background
classiÞcation, we modify classical Ncut method [23] to
recursively repartition the large group of previous bipartition
result if the number of groups segmented by Ncut is less
than the number of endmembers in the ßuorescence imaging.
As a result, all the pixels of the multispectral images are
classiÞed into several groups, which further are simply
merged into two main groups: the largest group is the
background AF group and the rest of the smaller groups
will join together into the target ßuorescence group. Based
on the improved Ncut-based classiÞcation, this paper has the
following two contributions for the ßuorescence SUM. First,
by performing improved Ncut-based bipartitioning of target
ßuorescences and background AF groups, we propose target/
background classiÞcation to beneÞt the endmember identiÞ-
cation from the target and background groups for accurately
initializing NMF. Second, this target/background classiÞcation
facilitates imposingL1/2-norm [24], [25] partial sparseness
constraint on the abundances of the target ßuorescent group
but not on that of AF group in the NMF, which is based on
hierarchical alternating least squares (HALS) framework. The
remainder of this paper is organized as follows. Section II
describes the idea and the details of the proposed TBCR-NMF
algorithm. Section III provides experimental results on syn-
thetic andin vivo ßuorescence imaging data. The conclusion
and discussion are given in Section IV.

II. M ATERIALS AND METHODS

The ßuorescence image data acquired with multispectral
imaging instruments comprise four contiguous bands in this
paper. A multispectral data set is usually stacked as an image
cube and thus can be treated as a 3-D volumetric data set
with two spatial axes (X and Y) and one spectral axis (λ),
as illustrated in Fig. 1. From a data-ßow point of view, the
ßowchart of the proposed algorithm can be characterized as
the following (see Fig. 1). First, a multispectral image cube
is iteratively segmented into multiple separated homogeneous
regions using the improved Ncut algorithm. Second, we further
group these regions into target and background groups by
classifying the largest region into the background group while
merging all other small regions into the target group. Third,
endmember extraction methods are employed to extract the
spectral signaturesS of the target ßuorescences and AF from
the target and background regions for the NMF initialization.
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where assoc(A, V) = ∑
u∈A,t∈V w(u, t) is the total connec-

tions from nodes inA to all nodes in the graph and assoc(B, V)
is similarly deÞned. The Ncut grouping algorithm consists of
the following steps. First, letH be anN × N diagonal matrix
with h on its diagonal andN be the number of the nodes
and h(i ) = ∑

j w(i , j ), where the weightw(i , j ) is deÞned

as w(i , j ) = e−(‖xi −x j ‖2/σ ), with xi and x j representing the
normalized spectra of nodesi and j , which have zero-mean
and unit variance, respectively. In addition,σ = 0.1 is a
positive scaling factor determining the sensitivity ofw(i , j )
to the spectrum difference between nodesi and j ; Then, we
solve (H − W)v = ηHv for eigenvectorsv with the smallest
eigenvaluesη, whereW is N × N symmetric weight matrix
with the element beingw(i , j ). At last, use the second smallest
eigenvectorv1 and the splitting value 0.4 to bipartition graph,
i.e., the bipartition is implemented by grouping thei th node
into A if the i th component of eigenvectorv1 is larger than 0.4,
B otherwise.

For the multiple ßuorophores inin vivo ßuorescence
imaging, there are more than two classes in the ßuorescence
imaging. Therefore, the spectral emissions of some
ßuorescence targets are more similar to those of AF than
other ßuorescence targets, such that Ncut will lead to a wrong
target/background classiÞcation by aggregating some ßuores-
cence targets into the background AF group. To avoid this
misclassiÞcation, we need to modify the recursive two-way
Ncut method. Considering that background AF (including
various background noises) has a dispersive spatial distribution
while multiple ßuorophores are locally accumulated at speciÞc
locations, we assume that the pure background AF regions are
larger than the target ßuorophore regions. Through Ncut-based
bipartition, the larger group is either pure AF region or the
regions that contain AF and some target ßuorophores. In the
latter case, the larger group will be bipartitioned again until
all target ßuorophores are separated from the AF region.
Because the aim of the improved recursive Ncut method is
to classify all pixels of the whole ßuorescence region into
two classes, background AF and target ßuorescence groups,
all the separated smaller regions except the largest AF region
are Þnally combined togetherinto the target ßuorescence
group.

Based on the above analysis, we propose an improved
recursive Ncut method. First, to use the Ncut method,
each 992× 992 spectral image is decimated into a size of
100× 100 pixels. Decreasing the number of graph nodes from
nearN = 1 000 000 toN = 10 000 by this image subsampling
can solve the large graph problem, which consumes too much
memory and requires huge computational complexity in
handling large-scale weight matrixW (with N × N elements)
for the graphical representation and generalized eigenvalue
computation. In our experiments, changing image size from
200× 200 pixels to 100× 100 pixels can obviously decrease
Ncut computation time from 50.6 to 2.8 s, but does not
have an adverse effect on target/background classiÞcation,
because the Ncut methodÕs graph-based generalized eigenvalue
computation is less sensitive to the spatial information lost dur-
ing subsampling than other local feature-based segmentation.
Besides, even if small noisy misclassiÞcation occurs, it cannot

affect the Þnal TBCR-NMFÕs performance, because we only
require an approximate global target/background classiÞcation
for further decomposition reÞnement by TBCR-NMF itself.
Second, after the initial Ncut-based bipartition, only the large
cluster of the bipartition result will be chosen for subsequent
bipartition. Third, we recursively repartition the large cluster
of previous bipartition result if the number of intermediate
clusters segmented by Ncut is less than the number of
endmembers in the ßuorescence imaging. Finally, the largest
group is considered as the background AF group and all the
rest of smaller groups are merged into the target ßuorescence
group. The intermediate target/background classiÞcation
result after improved Ncut segmentation is shown in Fig. 1,
where the different colors mean the different intermediate
clusters sequentially segmented by the improved Ncut. The
Þnal target ßuorescence group is formed by grouping all the
small clusters except the large cluster of AF region.

B. Endmember Extraction for NMF Initialization

To Þnd the optimal productCS that best approaches
the mixed image data matrixD ∈ R

N×L+ (N is the total
pixel number in a single image andL is the spectral band
number), HALS-based NMF [26]Ð[28] is adopted to perform
sequential constrained minimization on a set of subobjective
functions F(C:k, Sk:) = (1/2)‖Rk − C:kSk:‖2

2, where each
column C:k of C ∈ R

N×K+ represents the spatial distribution
of one endmember component,K is the number of the
endmember, and each rowSk: of S ∈ R

K×L+ represents the
spectrum of a speciÞc endmember. fork = 1, 2, . . . , K ,
Rk = D − ∑

i �=k C:i Si :.
To initialize NMF, we use the pixels of two groups to deter-

mine the corresponding spectra for the different ßuorescence
components. We assume that the Þrst (K − 1) constituent
components represent the ßuorophores and the last component
describes the AF. AFÕs initialized spectrum (SK ) is set to
the average spectrum of all AF pixels, while the spectra
S1, S2, . . . , SK−1
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the L1/2-norm as

F(C:k, Sk:) = 1
2
‖Rk − C:kSk:‖2

2 + 2θ

N∑

i=1

(Cik)1/2 (2)

where theθ is a regularized parameter to balance the tradeoff
between the approximation accuracy and the sparseness of the
multiple ßuorophoresÕ abundances. The gradient derivation
of F(C:k, Sk:) with respect toC:k is

∂ F(C:k, Sk:)
∂C:k

= −(Rk − C:kSk:)Sk:T + θ(C:k)−1/2 (3)

whereC−1/2
:k is given by the element-wise square root for each

entry in the vectorC:k. By setting (3) to zero, we can get the
updating rule ofC:k. However, it involves a rather high com-

putation cost due to the computation of the termC−1/2
:k . To cir-

cumvent this problem, we approximateC:k in the θ(C:k)−1/2

term by its estimationĈ:k obtained from the previous update,
rather than compute the termC:k directly. Hence, (3) takes a
simpliÞed and more computationally efÞcient form

∂ F(C:k, Sk:)
∂C:k

= −(Rk − C:kSk:)Sk:T + θĈ:k
−1/2

. (4)

By setting (4) to zero, the rule of updatingC:k takes the
following form:

C:k = max
(
eps, (RkSk:T − θ(C:k)−1/2)/‖Sk:‖2

2
)

(5)

where eps is a very small constant (∼10−16) and prevents
from dividing by zero. The rules of updatingSk: for (2) is

Sk: = max
(
eps, C:kT Rk/‖C:k‖2

2
)
. (6)

For k = K , the subobjective function has no sparseness
constraint, and the corresponding updating rules are the same
as the other parts of the HALS optimization.

For the convenience of parameter setting, we convert the
regularized parameterθ of TBCR-NMF into a desired sparsity
valueφ [10], which represents the sparseness degree that we
expect the abundances of multiple ßuorophores to reach. The
sparsity valueφ, being 0 for nonsparse results and 1 for
extremely sparse results, can be deÞned as

φ(Ck) =
√

N − (∑N
n=1 |cnk|/

√∑N
n=1 c2

nk

)

√
N − 1

(7)

whereCk ∈ R
N×1+ is thekth column of abundance matrixC,

and cnk is each element atCk with n = 1, 2, . . . , N.
SpeciÞcally, for each ßuorophoreÕs abundanceC:k that has
a corresponding regularized parameterθk, we use a method
similar to that in [31] to directly control theθk value:
θk is initialized to 0.001, and after each iteration, the current
sparsityφ is computed by (7) for the abundanceC:k; thenθk is
increased by 5% if the current sparsity is less than the desired
sparsity valueφ; otherwise,θk is decreased by 5%.

The detailed pseudocode of partially sparse NMF algorithm
is summarized in Algorithm 1. The algorithm computation
is terminated when the absolute value of difference between
the two adjacent objective functions is less than 10−4, or the
maximum number of iterations exceeds 1000.

Algorithm 1 Partially Sparse NMF

Input : Data matrixD ∈ R
N×L+ and initial C ∈ RN×K+D

N�RK×L+D
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Fig. 2. Synthetic Data. (a)Ð(c) Abundances of AF488, AF555, and AF. (d) Corresponding emission spectrafor AF488 (green line), AF555 (blue line), and
AF (red line). (e) Mixed ßuorescence image acquired at 555 nm. (f) Grouping result obtained with improved Ncut target/background classiÞcation.

all endmember components are used to evaluate the overall
performance of estimating spectral signatures and their corre-
sponding abundances, respectively.

A. Synthetic Data

We use two ßuorescence parts, Alexa Fluor 488 and
Alexa Fluor 555 (AF488, AF555; Invitrogen, Carlsbad,
USA), and one AF part to build a simulated phantom [4] in
Fig. 2. The spectral signatures of ßuorescence parts are Þtted
emission spectral curves of AF488 and AF555 at the spectral
wavelengths from 480 nm to 650 nm with interval of 5 nm,
while AFÕs spectral signature is a slowly varying curve in the
same range [see Fig. 2(d), green line for AF488, blue line
for AF555, and red line for AF]. The abundances of AF488
and AF555 consist of two parts: one part is pure ßuorescence
dye and the other part is mixed with AF488 and AF555 [see
Fig. 2(a) and (b)]. The mixed part is at the top-left of the
phantom, while the pure parts are at the bottom-left for AF488
in Fig. 2(a) and the bottom-right for AF555 in Fig. 2(b).
According to the sparsity deÞnition in (7), the true sparsity of
the abundance of AF488 (or AF555) is 0.85. Finally, the total
simulated phantom is obtained by adding the two ßuorescence
parts and the AF part together, and the abundance intensity
ratio of AF to ßuorophores (AF/F intensity ratio) is 0.3.
Fig. 2(e) shows the mixed ßuorescence image acquired at
the spectral band of 555 nm wavelength. Fig. 2(f) shows
the classiÞcation result of the synthetic data. The target
ßuorescence group is obtained by combining three different
ßuorescence regions (with different colors), which are

sequentially isolated from the background AF group after
three iterations of the improved recursive Ncut computation.

We test the above-mentioned algorithmsÕ unmixing perfor-
mances with the metrics ofSAD and RMSE, which have
averages (bars) and standard deviations (error bars) resulting
from the 20 runs of each algorithm. The algorithmsÕ per-
formances are dependent on the initial sparsity parameterφ
(or the regularized parameterθ ). Too small values ofφ andθ
cannot represent a reasonable sparsity of unmixed results while
too large values ofφ andθ will lead to excessive sparsity and
inaccurate unmixed results. Considering the general sparsity
of abundances for multiple ßuorophores in preclinical appli-
cations, we select a series ofφ values from 0.5 to 0.9 with
an interval of 0.05 to demonstrate the effects of different
initial sparsity values on the performance of S-NMF and
TBCR-NMF. As forL1-HALS, theθ value is 10−4, 5× 10−4,
10−3, 5× 10−3, 0.01, 0.05, 0.1, 0.5, and 1.0.

The performance metrics for different parameters ofθ andφ
are shown in Fig. 3 when the AF/F intensity ratio is set to 0.3
with no noise added and with signal-to-noise ratio (SNR)
being set to SNR = 15 dB. L1-HALSÕs performance
has been inßuenced by the regularized parameterθ . The
SAD and RMSE achieved withL1-HALS are the largest
compared with other algorithms. For S-NMF and TBCR-NMF,
their unmixing performances also have been inßuenced by the
different values of initial sparsity parameterφ, which should
be set to the true sparsity (0.85) of the abundance of multiple
ßuorophores in ideal situations. Therefore, too small or too
largeφ cannot produce good unmixed results for S-NMF and
TBCR-NMF. In Fig. 3(a), whenφ is smaller than 0.65 or larger
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Fig. 3. Algorithm performances (SAD and RMSE) for different values of parameterθ and φ when (a) no noise is added and (b) noise is added with
SNR= 15 dB.

than 0.85, theSAD andRMSE become large and the unmixed
results obtained with S-NMF and TBCR-NMF become worse.
However, TBCR-NMF obtains the smallestSAD andRMSE
among the three algorithms when the sparsityφ changes from
0.50 to 0.90 (orθ changes from 0.0001 to 1.0000). When
the sparsityφ value is set to 0.90 (or 0.50), the poorest
performances are achieved by all three algorithms, among
which the TBCR-NMF is still the best.

The SNR in Fig. 3(b) is set to 15 dB, so that there is
strong noise in the ßuorescence data and the performance
of all algorithms degrades with increasing noise levels. The
proposed TBCR-NMF still achieves the smallestSAD and
RMSE whenφ ranges from 0.5 to 0.9. TheRMSE achieved
by TBCR-NMF is relatively steady whenφ ranges from
0.5 to 0.85. When the initial sparsity valueφ exceeds the
true sparsity (0.85), the values ofSAD andRMSE obtained
by TBCR-NMF increase obviously, but are still smaller than
those obtained by other algorithms. Therefore, TBCR-NMF
can achieve the best unmixedresults when there is strong
noise in the ßuorescence data.

As low AF/F ratio will highlight multiple localized ßuo-
rophores from the background AF, it essentially makes the
mixed spectral data sparser than the high AF/F ratio and
the corresponding NMF problem will have sparser solutions
than the high AF/F ratio. Therefore, the NMF performance
is largely dependent on the AF/F ratio. For simulation exper-
iments, the AF/F intensity ratio ranges from 0.1 to 0.9 with
interval of 0.2. Theφ andθ parameters are set to 0.8 and 0.01,
respectively, to achieve the best unmixing performance for all
algorithms.

Fig. 4(a) shows the differentSAD and RMSE values for
the different AF/F intensity ratios in the noiseless data. The
initialization is Randommethod forL1-HALS, Pure method

for S-NMF, andGraph method for TBCR-NMF. Fig. 4(a)
shows that the performances ofL1-HALS and S-NMF
algorithms improve with decreasing AF/F intensity ratio. The
unmixed results obtained withL1-HALS are worst compared
with other results. However, TBCR-NMF is not sensitive
to the AF/F ratio and obtains the smallestSAD andRMSE
values in all different AF/F intensity ratios.

Fig. 4(b) shows the performance dependence on the
different initialization methods, when AF/F ratio,φ andθ , are
set to 0.3, 0.8, and 0.001, respectively.L1-HALS is initialized
with Random, Graph, andPure methods, while S-NMF and
TBCR-NMF are initialized withGraph and Pure methods.
The SAD and RMSE values ofL1-HALS using different
initializations are similar and the worst among the three
algorithms due to the sparseness constraint being imposed
on all abundances. S-NMFÕs performance improves with the
Pure initialization having
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Fig. 4. (a) Algorithm performances for different values of AF/F intensity ratio. (b) Algorithm performances for different initialization methods.

Besides theL1-HALS and S-NMF, we also use two
NMF-based SUM algorithms: nonnegative matrix underap-
proximation (NMU)2 [34] and NMF with L0 constraint
(L0-NMF) [35] for comparison. NMU solves NMF problem
with additional underapproximation constraintCS ≤ D which
allows to obtain better part-based decompositions, while
L0-NMF introduces sparseness into all abundances via the
L0-norm constraint. All algorithms assume that the number
of endmembers is 3, orK = 3. The TBCR-NMF,L1-HALS,
NMU, and L0-NMF methods are not initialized witha priori
knowledge of calibrated endmember spectra except the
S-NMF method. The parameterφ for L0-NMF, S-NMF, and
TBCR-NMF is 0.75, the parameterθ for L1-HALS is 0.005.
To reduce computation cost, we use OtsuÕs [36] method for
preprocessing to obtain the mouse body mask with whole
ßuorescence regions of interest, whereby all algorithms are
applied to the ßuorescence data within the mask only. For
the best visual effect, all the observations and unmixed results
(spatial distribution of all constituent components) are shown
with rainbow pseudocolor and overlaid on the gray-scale
photographic image of corresponding mouse.

We Þrst give two in vivo BALB/c mouse experimen-
tal results to validate the proposed methodÕs performance.

2https://sites.google.com/site/nicolasgillis/code

All animal experiments in this paper were approved by
our institutional review board. In experiment I, AF488
and Alexa Fluor 594 (AF594; Invitrogen, Carlsbad, USA)
ßuorescent dyes are diluted to 0.1μgml−1. AF488 is injected
at the bottom of the body with 20 ng dye, while AF594 is
injected near the neck with the same quantity, and a mixture
of each dye with 10 ng is located at the middle portion of
the body. These three injections are not exactly controlled
with the same depth in tissues. Fig. 5(a)Ð(d) shows four raw
ßuorescence images acquired at 542, 579, 624, and 716 nm
spectral bands. The Þrst two images are excited at 474 nm
and the last two images at 565 nm. The calibrated spectra of
AF488, AF594, and AF [see Fig. 6(a)] are acquired at these
four emission Þlters by precalibrationex vivo experiments
in the same imaging conditions, while the spectrum of AF
is the average spectrum acquired in some chosen regions
of mouse with no ßuorescent dyes. Fig. 6(a) displays that
AF488, AF594 and AF have overlapping emission spectra.
Fig. 6(b) and (c) also shows the calibrated spectra of AF488,
AF555, and AF, acquiredex vivo at the 525, 542, 579,
and 624 nm spectral bands for the next twoin vivo ßuores-
cence imaging experiments in the following section.

Fig. 5(e) shows the target/background classiÞcation result
where the multiple ßuorophores are classiÞed as a target
group (red color) and separated from the whole background
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Fig. 7. Abundances (expressed as 1-D vectors)C of AF488, AF594, AF, and their spectraS from top row to bottom row for experiment I. The unmixed
results obtained with (a)Ð(d) NMU, (e)Ð(h)L0-NMF, (i)Ð(l) L1-HALS, (m)Ð(p) S-NMF, and (q)Ð(t) TBCR-NMF.

There are some missing parts of AF488 in the middle portion
of BALB/c mouse in Fig. 5(l) for L1-HALS, which also
falsely makes the unmixed background AF [Fig. 5(n)] appear
sparser and brighter than it actually is. The TBCR-NMF
and S-NMF can separate the ßuorescence targets from AF
in Fig. 5(o)Ð(q) and Fig. 5(r)Ð(t), respectively. However, the
unmixed results obtained with TBCR-NMF are smoother and
clearer than S-NMF.

The unmixed results of abundancesC (expressed as
1-D vectors) and endmember spectraS are illustrated
in Fig. 7(a)Ð(d) for NMU, Fig. 7(e)Ð(h) forL0-NMF,
Fig. 7(i)Ð(l) for L1-HALS, Fig. 7(m)Ð(p) for S-NMF and
Fig. 7(q)Ð(t) for TBCR-NMF, respectively. The TBCR-NMF
algorithm obtains more accurate unmixed ßuorescence
abundances compared with the other algorithms. All
algorithms have the highest abundance intensities that
correspond to the true pixel positions of ßuorescence targets.
The abundances of AF488 and AF594 are wide and contain
the unwanted AF parts that are not removed with NMU in
Fig. 7(a) and (b) andL0-NMF in Fig. 7(e) and (f). This
AF remainder also can be conÞrmed by AFÕs abundances
[Fig. 7(c) and (g)] obtained with both algorithms. The
L1-HALS [Fig. 7(k)] and S-NMF [Fig. 7(o)] have abnormal
(too large) values in the abundances of AF, except that

the TBCR-NMF [Fig. 7(s)] has slowly varying abundances
of AF. More importantly, the spectra estimated with S-NMF
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TABLE I

SAD AND SAD RESULTS ON THEIn Vivo EXPERIMENTSI AND II ( THE SMALLER VALUES MEAN BETTER RESULTS.
THE NUMBER IN BOLD REPRESENTS THEBEST PERFORMANCE)
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Fig. 9. Abundances (expressed as 1-D vectors)C of AF488, AF555, AF, and their spectraS from top row to bottom row for experiment II. The unmixed
results obtained with (a)Ð(d) NMU, (e)Ð(h)L0-NMF, (i)Ð(l) L1-HALS, (m)Ð(p) S-NMF, and (q)Ð(t) TBCR-NMF.

The unmixed abundancesC (expressed as 1-D vectors)
and endmember spectraS are illustrated in Fig. 9(a)Ð(d) for
NMU, Fig. 9(e)Ð(h) forL0-NMF, Fig. 9(i)Ð(l) forL1-HALS,
Fig. 9(m)Ð(p) for S-NMF and Fig. 9(q)Ð(t) for TBCR-NMF,
respectively. The TBCR-NMF achieves the most accurate
unmixed results compared with other algorithms. Particularly,
the Þrst row in Fig. 9 displays that AF488 abundance inten-
sities obtained with other algorithms still contain AF parts
that are not fully removed. The second row in Fig. 9 shows
that the AF parts have made contributions to the AF555
abundances with the NMU,L0-NMF and L1-HALS algo-
rithms except the TBCR-NMF and S-NMF. The S-NMF has
abnormal (too large) values for the AF abundance in Fig. 9(o),
while TBCR-NMF can get slowly varying abundances of AF
in Fig. 9(s). In general, the unmixed abundances of AF488
and AF555 from the TBCR-NMF algorithm [Fig. 9(q) and (r)]
are more sparse than other algorithms. Moreover, the spectra
obtained with NMU in Fig. 9(d),L0-NMF in Fig. 9(h),
and L1-HALS in Fig. 9(l) are clearly different from the cali-
brated spectra in Fig. 6(b). However, the spectra obtained with
S-NMF in Fig. 9(p) and TBCR-NMF in Fig. 9(t) are more
accurate than other algorithms.

The SAD and the averageSAD values of three unmixed
endmembers forin vivo experiment II are shown in Table I.

We can see that the TBCR-NMF gets the smallestSAD
(0.0961) and the best unmixing performance.

D. In Vivo Experiments III and IV

In this section, using another twoin vivo BALB/c mouse
experiments, we further compare the proposed method
with three recently published unmixing methods which
also utilize the spatial information in the multispectral
images. SpeciÞcally, besides the S-NMF that has good
unmixing performance, we also use the following methods
for performance comparison: the beta compositional model
based spatial-spectral (BCM-spatial) algorithm3 [18], sparse
unmixing via variable splitting augmented Lagrangian and
total variation (SparseTV) algorithm4 [19], and regularized
simultaneous forward-backward greedy (RSFoBa) algorithm5

[20]. The BCM-spatial method assumes beta-distributed
endmembers and identiÞes pixels with similar proportion
values to the pixel under unmixing by identifying the
K-nearest spatial-spectral neighbors. The SparseTV algorithm
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Fig. 10. (a)Ð(d) Raw ßuorescence (AF488 and AF555) images for experiment III acquired at the 525, 542,579, and 624 nm emission Þlters respectively,
the Þrst two images are excited at 474 nm and the last two images at 500 nm. (e) ClassiÞcation results. The different unmixed results obtained
with (f)Ð(h) BCM-spatial, (i)Ð(k) SparseTV, (l)Ð(n) RSFoBa, (o)Ð(q) S-NMF, and (r)Ð(t) TBCR-NMF.

includes the total variation regularization to the classical
sparse regression formulation to exploit the spatial-contextual
information present in the multispectral images. The RSFoBa
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TABLE II

SAD AND SAD RESULTS ON THEIn Vivo EXPERIMENTSIII AND IV ( THE SMALLER VALUES MEAN BETTER RESULTS.
THE NUMBERS IN BOLD REPRESENT THEBEST PERFORMANCE)
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